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Abstract

In this work, we study the theory of inflation with the non-minimally coupled quadratic, standard
model Higgs, and hilltop potentials, through £¢$°R term in Palatini gravity. We first analyze
observational parameters of the Palatini quadratic potential as functions of ¢ for the high-N
scenario. In addition to this, taking into account that the inflaton field ¢ has a non-zero vacuum
expectation value v after inflation, we display observational parameters of well-known
symmetry-breaking potentials. The types of potentials considered are the Higgs potential and its
generalizations, namely hilltop potentials in the Palatini formalism for the high-N scenario and
the low-N scenario. We calculate inflationary parameters for the Palatini Higgs potential as
functions of v for different ¢ values, where inflaton values are both ¢ > v and ¢ < v during
inflation, as well as calculating observational parameters of the Palatini Higgs potential in the
induced gravity limit for high-/N scenario. We illustrate differences between the Higgs potential’s
effect on ¢ versus hilltop potentials, which agree with the observations for the inflaton values for

¢ < vand &, in which v < 1 for both these high and low N scenarios. For each considered
potential, we also display n;, — r values fitted to the current data given by the Keck Array/

BICEP2 and Planck collaborations.
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1. Introduction

Inflation [1-4] is the current accepted model for explaining
large scale observations of the universe by positing that there
was a period of rapid expansion in the primordial universe.
The inflationary big bang model is a solution to main pro-
blems in cosmology: isotropy and homogeneity, the spatial
flatness, horizon, and unobserved magnetic monopoles. This
inflationary era can also produce and extend the small inho-
mogeneities which have appeared in the large scale structures
and the anisotropy in the cosmic microwave background
radiation temperature (CMBR). The most recent measure-
ments of the CMBR [5, 6] made by the Planck satellite give
some parameters that are related to the inflationary perturba-
tions. Two of these parameters have been measured even
more precisely in recent years; the amplitude of the curvature
perturbation, A% ~ 2.4 x 107 and the corresponding spec-
tral index, ny; = 0.9625 4 0.0048. Another important para-
meter is the running of the spectral index, a = 0.002 +
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0.010. Even though the constraints on « are not currently
sufficient to test the inflationary models, observations of the
21 cm line [7-9] are predicted to improve the measurement of
a = O(107%). In addition to this, the recent data from the
Keck Array/BICEP2 and Planck collaborations [10] con-
strains strongly the tensor-to-scalar ratio r < 0.06, which
gives a successful explanation to the amplitude of primordial
gravitational waves and the scale of inflation. Some ongoing
CMB B-mode polarization experiments [11-13] have pushed
the limit of » to <0.001, or have approached this limit. Each
of the parameters above are constrained at the pivot scale of
ks = 0.002 Mpc .

The observational parameters, in particular the spectral
index n, and the tensor-to-scalar ratio r, have been calculated
for various inflationary potentials [14]. However, the most
minimal realization scenario for the theory of inflation is that
the standard model (SM) Higgs boson behaves as the inflaton
field with minimal coupling (£ = 0). On the other hand, a
renormalizable scalar field theory in curved space-time needs
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the non-minimal coupling £°R between the inflaton and the
Ricci scalar [15-17]. Furthermore, even if the non-minimal
coupling ¢ equals to zero at the classical level, it will be
created by quantum corrections [15] and in particular, non-
minimal coupling to gravity is necessary to sufficiently flatten
the Higgs potential at large field values, so that it is in
agreement with observations. In this paper we aim to extend
the previous studies of how the inflaton field is coupled non-
minimally to gravity. We present how the value of the non-
minimal coupling parameter ¢ affects the observational
parameters for the inflationary potentials in the Palatini
formalism, in the case of the quadratic potential and sym-
metry-breaking type inflation potentials where the inflaton
field has a non-zero vacuum expectation value v after the
period of inflation. A non-zero v after inflation is such that
potentials can be related with symmetry-breaking in the very
early universe. Examples of such models for symmetry-
breaking, which we investigate in this work, are the well-
known Higgs inflation [18, 19] models, which are based on
the SM of particle physics and especially the Higgs field of
the SM behaving as the inflaton field, a scenario first pro-
posed by [19].

In addition to this, [20] has proposed the Lee-Wick SM
as an extension of the SM of particle physics supplying an
alternative to supersymmetry in terms of addressing the
hierarchy problems. They have indicated the cosmology of
the Higgs sector of the Lee—Wick SM in order to solve the
hierarchy problem. They obtained that homogeneous and
isotropic solutions are non-singular, so the Lee—Wick model
supplies a possible solution of the cosmological singularity
problem. Also, using the Higgs field, many models are taken
into account to explain early universe physics, such as bounce
inflation. According to this scenario, it is possible to avoid
the standard big-bang singularity by adding a non-singular
bounce before the inflation period. For instance, [21] has
suggested to construct a bounce inflation model with the SM
Higgs boson, where the one-loop correction is considered in
the effective potential of the Higgs field. According to this
model, a Galileon term has been introduced to get rid of the
ghost mode when the bounce happens. Finally, we discuss
hilltop potentials which are simple generalizations of the
Higgs potential.

In this paper, we use dynamics of the Palatini gravity to
be able to calculate inflationary parameters. Although the
Metric and Palatini formalisms are equivalent in the theory of
general relativity, if matter fields are coupled non-minimally
to gravity, these two formalisms correspond to two different
theories of gravity, as investigated in these [22-27]. In part-
icular, inflationary models with non-minimal couplings to
gravity can not be explained with potentials only, gravita-
tional degrees of freedom are required to define such models
[22]. The Palatini formalism differs from the Metric formal-
ism in that both the metric g, and the connection I' are
independent variables. Even though the two formalisms have
the same equations of motion, and as a result they correspond
to equivalent physical theories, the presence of the non-
minimal coupling between gravity and matter causes the
physical equivalence to disappear for these two formalisms.

In particular the E-attractor models which are known as
attractor behavior that occurs in the Starobinsky model for
larger £ values in Metric formulation, is lost in the Palatini
approach [28] and r can be taken to be much smaller values
compared to the Metric formulation for larger & values
[26, 29-31]. Another important difference between the Metric
and Palatini formalism, the inflaton field stays in the sub-
Planckian regime to supply a natural inflationary era in the
Palatini formalism [22]. In the literature, inflationary poten-
tials in Palatini gravity are taken into account in papers such
as these [22, 24, 25, 32-34]. In [24] the quadratic potential is
discussed in Palatini gravity taking N, = 50 and N, = 60,
they found that the strength of the non-minimal coupling,
& = O(1073) agrees with the current data just for Ny, = 60. In
addition to this, Higgs inflation in the Palatini formulation has
been studied in [22, 25, 32-34]. According to these papers,
predictions of r are very tiny for £ 2 1 values and so r is
suppressed further leading to well-known attractor behavior
in the Starobinsky model of the Metric formulation for large £
values, whereas the attractor behavior vanishes in the Palatini
approach.

This paper is organized as follows, we first describe
inflation with a non-minimal coupling and how inflationary
parameters are calculated (section 2) in the Palatini formula-
tion. Next, we analyze the Palatini quadratic potential in the
large-field limit for the high N scenario (section 3). We then
calculate inflationary predictions in detail for two different
symmetry-breaking inflation type potentials (Higgs poten-
tials) (section 4) for inflaton values ¢ > v and ¢ < v. We
then illustrate that hilltop potentials can be compatible with
the current measurements for cases of ¢ < v and & v < 1
(section 5). Furthermore, (in section 4) we calculate infla-
tionary parameters in the induced gravity limit for Palatini
Higgs inflation. Finally, we discuss our results and summarize
them (section 6).

2. Palatini inflation with a non-minimal coupling

We describe a non-minimally coupled scalar field ¢ with a
canonical kinetic term and a potential V,(¢). Then the infla-
tion action in the Jordan frame becomes

&::f&%th(%Fo@gWRwaw

—%¢@¢@¢—wwﬂ, @.1)

here, the subscript J indicates that the action is defined in a
Jordan frame. R, is the Ricci tensor and it is defined in the
form

R, = 0,17

v

— 9,1, + T, 17

ov vt op

_ TP T
IV R

(2.2)

In the metric formulation, the connection is taken as a func-
tion Qf the_ metric tensor. It is called the Levi-Civita connec-
tion I' = I'(g")

-\ 1

I, = Egkf’(aug,,p + 0vg,, — (2.3)
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On the other hand, in the Palatini formalism both g,, and
I' are independent variables, and the only assumption here is
that the connection is torsion-free, i.e. Ffw = Fﬁﬂ. By solving
equations of motion, one can obtain the following [22]

0, =T, + 6000,w(@) + 50,0(0) — g, 0w (@),

where

w(@) = In\F(9),

in the Palatini formulation. In this work, in order to calculate
inflationary parameters of symmetry-breaking type inflation
potentials, we choose the F(¢) to include a constant m?* term
and a non-minimal coupling £¢°R, which is necessary for a
renormalizable scalar field theory in curved space-time
[15-17] as we mentioned above. We are using units, where
the reduced Planck scale mp = 1/V87G ~ 2.4 x 10'8 GeV
is set equal to unity. Thus, either F(¢) — 1 or ¢ — 0 is
required after inflation. In that case, by taking m* = 1 — &
into consideration, we obtain F(¢) = m®> + & =1+
§(¢2—v2) [35]. Furthermore, we take Palatini quadratic
potential in the large-field limit into account. So, to be able to
compute observational parameters, we take F(¢) = 1 4+ £¢°.

24)

2.1. Calculating the inflationary parameters

The difference between Metric and Palatini formulations are
more easily figured out in the Einstein frame. By applying a
Weyl rescaling gg, ., = gW/F((b), we can show the Einstein
frame action in the form

|
SE:fd4X /—gE(Egg RE,,LLV(P)

1 ” Ve(9)
- gr’ 0,90,0 — ) (2.5)
22(¢) F " F(¢)?
where
1
Z(p) = —, (2.6)
F(9)
in the Palatini formulation. If we make a field redefinition
d
=22 @7

JZ(@)’

we obtain the action for a minimally coupled scalar field x
with a canonical kinetic term. Using equation (2.7), Einstein
frame action in terms of y can be obtained in the form

1 . 1
Sg = fd‘lx\/—gg (58,? Re(T) — 5 2 Oux Oy X — VE(X))-
2.8)

For F(¢) = 1 4+ &@¢*—v?), different limit cases for
equation (2.6) can be obtained:

1. Electroweak regime

If|E(p? — v)| < 1, ¢ = x and V(¢) ~ Vg(x). Thus,
in this limit, the inflationary predictions for the non-
minimal coupling case are approximately the same with the
ones for the minimal coupling case.

2. Induced gravity limit [36]
In this limit (&* = 1, F(¢) = &6%), Z(¢) = £¢* and
using equation (2.7), we obtain

¢ = vexp(x+/6), (2.9)
here we set y(v) = 0.
3. Large-field limit
If 452 > 07 during inflation, we have
(2.10)

b~ ﬁsinh(xx/z),

in the Palatini formulation. Using equation (2.10), infla-
tionary potential can be taken into account in terms of
canonical scalar field y, therefore slow-roll parameters are
written for Palatini formulation in the large-field limit
according to .
On the condition that Einstein frame potential is written
in terms of the canonical scalar field x, inflationary para-
meters can be found using the slow-roll parameters [37]

2
= 1(&) Cop=ta el B gy
2\V 1% V2

where x’s in the subscript represent derivatives. Inflationary
parameters can be defined in the slow-roll approximation by

ng=1—6e6+2n, r=16¢,
dn
o=
dink
In the slow-roll approximation, the number of e-folds is
obtained by

= 16en — 24€2 — 262

(2.12)

X
Ny — f VdX,

(2.13)
Xe Vx

3]

where the subscript ‘,’ indicates quantities when the scale

corresponding to k, exited the horizon, and ., is the inflaton
value at the end of inflation, which we obtain by e(x.) = 1.

The amplitude of the curvature perturbation in terms of
canonical scalar field y is written the form

1 vz
R= ="
2\/§7T val

The best fit value for the pivot scale k, = 0.002 Mpc™
is A% ~ 2.4 x 1072 [5] from the Planck results. Further-
more, we redefine the slow-roll parameters in terms of the
scalar field ¢ for numerical calculations, because for all
general ¢ and v values, it is not possible to compute the
inflationary potential in terms of x. Using equations (2.7) and
(2.11) together, slow-roll parameters can be found in terms of

¢ [38]

€ =7Zey m=17Zng+ sgn(v"Zz' /62—0 ,

(2.14)

1

= z(zgi + 3sgn(V)Z'n, /62—‘*’ + z"eo), (2.15)
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1 1\2 " nym
5= —(K) .My = V—, 2= VVZ ) (2.16) 0.12f
2\V 1% 1% o010k — N=60
In addition to this, equations (2.13) and (2.14) can be _ oos} N=50
obtained in terms of ¢ in the form .06k High-N
0 dé ok A e~ \ | Middle-N
Ny = sen(V) f r__% 2.17) o4 / —— Low-N
o, Z(9)2€¢p 0.02f Y
32 0.00 DU LN A -
1 y3/ (2.18) 0.950 0955 0.960 0.965 0970 0.975

AR = ———.

2J3 71 NZ|V|

To compute the values of inflationary parameters, we should
obtain a value for N, numerically. Under the assumption of a

standard thermal history after inflation, N, is given as follows
[39]

Ny~ 64.7 + l np—t — ;ln pg4
2 mp 3 +w)  mp

+ (71 - l) ntr, (2.19)
30 +w) 4) my

here, p, = (3/2)V(¢,) is the energy density at the end of infla-

tion, p, ~ V(¢y) is the energy density when the scale corresp-

onding to k, exited the horizon, p, is the energy density at the

end of reheating and w, is the equation of state parameter

throughout reheating, which we take its value to be constant.

Predictions of the inflationary parameters change depending on
the total number of e-folds.

2.2. Different reheating scenarios

In literature, most of the papers take N, =~ 50-60 as a con-
stant while calculating the inflationary parameters in general.
On the other hand, to be able to discriminate inflationary
models from each other, their predictions should be more
accurate. Therefore, to indicate an acceptable range of N,
depending upon reheating temperature, we take three different
scenarios into account to define N,:

1. High-N scenario

w, = 1/3, this case corresponds to the assumption of
instant reheating.
2. Middle-N scenario

w, = 0 and the temperature of reheating is taken as
T, = 10° GeV, while computing p, using the SM value for
the usual number of relativistic degrees of freedom values
for g, = 106.75.
3. Low-N scenario

w, = 0, same as middle-N scenario. But in this case,
the reheat temperature 7, = 100 GeV.

The n; — r curves for different scenarios are displayed in
figure 1 for the Higgs potential in the Palatini formulation
(debated in section 4) together with the 68% and 95%
confidence level (CL) contours based on the data taken by the
Keck Array/BICEP2 and Planck collaborations [10]. The
figure illustrates the curves for the confidential N, values of
50 and 60, which are necessarily taken in agreement with the

Ns

Figure 1. The figure illustrates that n; — r predictions for different £
values and v = 0.01 for various reheating cases as described in the
text for Higgs potential in the Palatini formalism. The points on each
curve represent £ = 10723, 1072, 1071'5, 1071, and 1, top to
bottom. The pink (red) contour corresponds to the 95% (68%) CL
contours based on the data taken by the Keck Array/BICEP2 and
Planck collaborations [10].

012 ' ' ' '
0.10}

0.08}
0.06f

—

0.04f

0.02f

0.958 0960 0.962 0964 0.966 0.968
ns

Figure 2. The figure shows that n, — r predictions for quadratic
potential in the Palatini formalism for high-N scenario for the
different ¢ values that are mentioned in the text. The pink (red)
contour correspond to the 95% (68%) CL contour given by the Keck
Array /BICEP2 and Planck collaborations [10].

range expected from a standard thermal history after inflation
for the Higgs potential in the Palatini formalism. However,
N, is smaller (for example between roughly 45-55 providing
that v ~ 0.01) for the hilltop inflation models (described in
section 5), because inflation takes place at a lower energy
scale in these models.

3. Quadratic potential

The quadratic inflation potential model in Jordan frame is
given by in the form

V() = %mw, G.1)

here, m is a mass term. By using equation (2.14) and the value
of amplitude for the curvature power spectrum A% ~ 2.4 x
1079, we can fix the required mass to be m ~ 6 x 10~ for
N = 60 and minimal coupling case, thus n; >~ 0.967 and
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Figure 3. For quadratic potential in the Palatini formalism for high-N scenario, the figures show that m and « values as functions of &.

Higgs potential: ¢>v, high-N
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IHiggs potlential: ¢>.V’ high—N
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Higgs potential: ¢>v, high—-N
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— &=-10"*
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Figure 4. For Higgs potential in the Palatini formalism in the cases of ¢ > v and high-N scenario, in the top figures display changing n, and r
values for different £ cases as function of v and the bottom figure shows that n; — r predictions for selected £ values. The pink (red) contour
correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].

r = 0.16. The results are slightly disfavored by the latest
observational data [10].

In the large-field limit (described in section 2), Einstein
frame quadratic potential for Palatini approach in terms of
using equation (2.10) can be obtained as follows

m?  sinh? (xy/9)
26 (1 + sink® (xJ©))?

As it can be seen from equation (3.2), by expanding this
potential around the minimum for large ¢ values, we can
obtain the flattening potential. In literature [24], analyzed the
values of ng, r and m for the quadratic potential in Palatini

VE(O) =~

3.2)

gravity taking N, = 50 and N, = 60 to be constant. In this
work, we analyze ng, r, « and m values as a function of ¢ for
the Palatini quadratic potential with large-field limit numeri-
cally for the high-N scenario. According to our results from
figure 2, we find that if the non-minimal coupling parameter
between the range 10~* < ¢ < 107 for the high-N scenario,
values of ng can be inside the observational region, and as it
can be seen from figure 3, m ~ 6 x 10° for the range of
104 <¢<107°. However, for the &~ 107> value,
m=~2x107° As a result, the energy scale should be
determined by the observational values on the amplitude on
the scalar power spectrum.
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Figure 5. For Higgs potential in the Palatini formalism, the change in
¢ > v and high-N scenario.

In the case of larger &, n, values decrease and they remain
outside the observational region. For the range between
107* < ¢ < 1072, we obtain 0.01 < r < 0.12. Furthermore,
for the low-N scenario, inflationary parameters of Palatini
quadratic potential remain the outside the observational
region for any ¢ value. Finally, figure 3 shows that « values
are very tiny for this type of potential.

4. Higgs potential

In this section, we take a well-known symmetry-breaking
type potential into account [40]

Vi(6) = A[l - (%)T,

which is known as the Higgs potential. This potential was
investigated for the minimal coupling case in such recent
papers, see [14, 41-44]. In this case, when inflation takes place
around the minimum, the potential is approximately quadratic
and thus the quadratic potential predictions in terms of N,

nswl—i, r%i, az—%, “4.2)
Ny Ny N

4.1)

can be obtained for inflation both ¢ > v and ¢ < v. In this
work, instead of minimal coupling case, we analyze the Higgs
inflation with non-minimal coupling in Palatini formulation
both high-N scenario and low-N scenario. Furthermore, using
equation (2.17), we obtain N, for non-minimally coupled
Palatini Higgs inflation analytically in the form
1 5 2 Vi gy
Ny 3 (9% — 9,) 1 In ¢e-
In the large-field limit (described in section 2), for Palatini
Higgs inflation with non-minimal coupling, n,, r and « can be
found using equation (2.7) together with equations (2.10),
(2.12) and (2.13) in terms of N,

ng~1— i, r%i, az—%. 4.4)
Ny EN; Ny

4.3)

On the other hand, in the case of ¢ < v when cosmological
scales exit the horizon, the potential approximates to the hilltop

« and A as a function of v is plotted for different £ values in the cases of

potential type (described as section 5), effectively

Vi(o) ~ A[l - 2(9)2].
A%

Predictions of this potential type in equation (4.5) for ¢ < v
that r is very suppressed and n; ~ 1-8/ v2. In this section, we
analyze numerically for ¢ > v and ¢ < v cases in the high-N
scenario and the low-N scenario for Higgs potential with non-
minimal coupling in the Palatini approach with broad range of &
and v. In literature, inflationary predictions of Palatini Higgs
inflation were taken into account for different N, values, in

general taken to be constant between N, =~ 50-60 [33, 34,
45-47]. For example, [33] analyzed the preheating stage fol-
lowing the end of Palatini Higgs inflation by taking N, ~ 50.
They showed that the slow decaying oscillations of Higgs
afterwards the end of inflation, permits the field to periodically
return to the plateau of the potential so the preheating stage in
the Palatini Higgs inflation is necessarily instantaneous.
Therefore, this decrease in N, is required to solve the problems
of hot big bang.

First of all, we illustrate ¢ > v case for both scenarios.
As it can be seen in figures 4 and 5, £ < 0 cases are outside
the 95% CL contour given by Keck Array/BICEP2 and
Planck collaborations [10] for all v values. In addition to this,
for small v values, inflationary predictions of € = 10~ can be
outside the 95% CL contour. However, in larger v values,
predictions are inside 95% CL for £ = 107>, For £ = 1072,
predictions are inside 68% CL for small v values but for larger
values of v, predictions remain within 95% CL contour.
Furthermore, for £ > 1 cases, predictions are inside 68% CL
for small values of v and when v increases, they enter in the
95% CL and r is very tiny for larger and smaller values of v,
so ris highly suppressed at any v values for larger £ cases. For
£ =10"%and £ = 107, r is very small for large v values but
this case is not valid for smaller values of v. For both £ < 0
and £ = 0 cases, r does not take very small values for larger
and smaller v. In addition to this, as it can be seen that from
figure 5, o takes very tiny values to be observed in the near
future observations for selected £ cases and at any v values.
Moreover, for all selected £ values, when v increases, values
of A increase depending on v.

(4.5)
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Figure 6. For Higgs potential in the Palatini formalism in the cases of ¢ > v and low-N scenario, in the top figures display changing n, and r
values for different £ cases as function of v and the bottom figure shows that n;, — r predictions for selected ¢ values. The pink (red) contour
correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].
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Figure 7. For Higgs potential in the Palatini formalism, the change in « and A as a function of v is plotted for different £ values in the cases of

¢ > v and low-N scenario.

In addition to ¢ > v and high-N cases, figures 6 and 7
illustrate the ¢ > v but low-N case for the Higgs potential in
the Palatini formalism. According to figure 6, predictions of
& =0 and £ < 0 cases are similar to ¢ > v and high-N sce-
nario results. On the other hand, predictions for the remaining
¢ values slightly differ from the high-N case. For £ > 1 cases,
predictions can be in the 95% CL contour for small v values
but when v increases, predictions remain inside 68% CL. In
the low-N case, values of r for all the selected £ values
overlap with the high-N case, so again r is very small for
& > 1 cases for both small and large v values. Also for larger
values of v for € = 1072 and £ = 1077 cases, r is also very

tiny except for small v values. Furthermore, in the low-N case,
values of o and A are similar to the high-N case, so « takes
very small values for our selected & cases and for all v values
to be observed in the near future measurements.

Numerical results for ¢ < v and high-N cases for Higgs
potential in the Palatini approach can be seen in figures 8 and
9. According to these figures, predictions of £ = 10 are
ruled out for current data. In contrast, { = 10 and £ = 0
cases can be inside the 95% CL contour given by the Keck
Array /BICEP2 and Planck collaborations [10]. However,
€ < 0 cases for the range between 10 < v < 20, predictions
are outside the 95% CL contour, but when v increases, they
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Figure 8. For Higgs potential in the Palatini formalism in the cases of ¢ < v and high-N scenario, in the top figures display changing n, and r
values for different £ cases as function of v. The bottom figures show that n; — r predictions for selected £ values, left panel: £ > 0 and £ = 0
cases, right panel: £ < 0 cases. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and

Planck collaborations [10].

Higgs potential: ¢<v, high—-N

~0.0001
—_10-3
~0.0002} ¢=10
0.0003 ¢=10
S — §=0
-0.0004f £=-1072
~0.0005} — §=-10
— £=-10?
~0.0006L— - - - -
1.0 15 2.0 25 3.0
logqgv

Higgs Ipotential; P<v, high—N

1 / £=1073
0.001 1 £=10"
< — &=0

1076 1 2
§=-10

10-° { — &=-10

. . . . | — =10

1.0 1.5 2.0 25 3.0
log1ov

Figure 9. For Higgs potential in the Palatini formalism, the change in « and A as a function of v is plotted for different £ values in the cases of

¢ < v and high-N scenario.

can be in the region compatible with observational data
depending on v. Unlike from ¢ > v and high-N scenario, here
the values of r are very small for £ = —10 and & = —10?
cases. In addition to this, o values are very small similar to
other situations. Lastly, for £ < 0O cases, values of A increase
depending on v, but this case is different for £ = 10> and
&= 0% values, as it can be seen in figure 9.

Furthermore, we also obtain numerical results in the cases of
¢ < v and low-N scenario for the Higgs potential in figures 10
and 11. According to these figures, inflationary predictions of
& > 0 cases are ruled out for current data. In addition to this, the
cases of & < 0, predictions begin to enter the observational

region, when v increases. For larger v values, predictions remain
inside the 68% CL contour, as well as the values of r are strongly
suppressed for cases of both £ = —10 and £ = —10% According
to figure 11, results for the o and A are the same as ¢ < v and
high-N scenario. We also display inflationary parameters of the
Higgs potential in the limit of induced gravity, described as in the
text (see section 2) for high-N scenario in figure 12. According to
this figure, all our selected & values are in the 68% CL contour.
What is more, in this limit case, « values are also very tiny for all
v and values of A increase, depending upon v.

In the induced gravity limit, using equation (2.9), the
Einstein frame potential can be obtained in terms of x in the
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of ¢ < v and low-N scenario.
form

Ve(x) = #(1 — 2exp(—2EX)). .6)

For this potential, using equation (2.13), 8&(N =~
exp (2\/2 x). Therefore, using equation (2.12) we can find n;
and r approximately in the induced gravity limit

2 3 2
- — —2 9 r % _2 .
4EN; &N

N
The Higgs potential in the induced gravity limit was pre-
viously investigated for the Metric formulation in [48-50]. In
this work, we extend these papers by analyzing the Higgs
potential in the induced gravity limit in the Palatini for-
mulation for ¢ > v and high-N scenario. To sum up, in

4.7

ny /2

literature, Higgs inflation with non-minimal coupling has
been discussed such [35, 38, 48-51] in the Metric formula-
tion. References [38] and (for just & > 0) [51] analyzed the
Higgs inflation with non-minimal coupling in the Metric
formulation in general by taking F(¢) = 1 4+ £¢* Moreover,
[35] explained the Higgs inflation with non-minimal coupling
in the Metric formulation for both ¢ > 0 and £ < O cases for
F(¢) = 1 4+ &¢*—v?). On the other hand, some papers took
non-minimally coupled Higgs inflation in the Palatini for-
mulation into account [22, 25, 32, 33], which we mentioned
before. Reference [22] examined for the large-field limit by
taking F(¢) = 1 + &)* and they found n, ~ 0.968 and
r~ 10" in the Palatini approach. In addition to this, by
taking F(¢) = 1 4+ £¢%, [25] found predictions of various
inflationary parameters in the Palatini approach. They also
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found that r values are highly suppressed for £ >> 1 limits
and they obtained very small o values to be observed in the
future measurements. Similar to the other papers [33], ana-
lyzed Palatini Higgs inflation by taking F(¢) = 1 4 £¢°.
Different from previous papers, we analyze inflationary
parameters of the Palatini Higgs inflation with non-minimal
coupling using F(¢) = m* + £¢° = 1 + € (¢°—v?). Further-
more, we display our numerical calculations using both the
high-N and the low-N scenario.

5. Hilltop potentials

In this section, we take other symmetry-breaking type
potential models into account which also take place in some
supersymmetric inflation models, i.e. [52-54] for the case of
the inflaton value is ¢ < v throughout inflation. These
potential types can be described with the generalization of the
Higgs potential in the form

2
ww>=AP—{%Y],<u>2>

In the electroweak regime, which explained in section 2, we
have ¢ =~ y and also y < v during inflation, and the Einstein
frame potential can be obtained as in terms of canonical scalar
field

S.D

14
v%(x)RfA[l —-(fﬁ) —-2£x2], (52)
T
where we have defined 7 = v/2'/#. In the literature, hilltop
potentials with minimal coupling case (£ = 0) have been
investigated such [14, 37]. Furthermore, by taking the
equations (2.11)—(2.13) into consideration, we find

re 128(

which illustrates that » is strongly suppressed and n, takes
smaller values than the range in agreement with observational
results. On the other hand in this work, we calculate infla-
tionary parameters for hilltop potentials with non-minimal
coupling in Palatini formulation, both for the high-N and the
low-N scenario numerically. The results of these calculations
are shown in figures 13—16. Furthermore, for the potential in
equation (5.2), n, and r can be obtained in the form

8(n — DE
1 — =N 8¢,

128£272(457—2//1)2/(#*2)CS(H*Z)EN*
T (DN 2D/ ()

1

n—2
b

(5.3)

1672¢
2[4 — 2)NyJ?—2

(=12
(1 — 2)Ny

ng ~

ng~1+

(5.4)

These predictions are compatible with our numerical results
for ny — r that were computed using the Jordan frame
potential described by equation (5.1) which is shown in the
top figures in the figures 13 and 15 for two different scenarios.
As it can be seen from the figures 13—16 in general, on the
condition that ¢ v <1 and 7= 0.01, observational
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Figure 14. For hilltop potentials in the Palatini formalism, the figure
shows that « values as functions of ¢ for 7 = 0.01 and different p
values in the cases of ¢ < v and high-N scenario.

parameters can be inside observational region except for
1 = 4 since predictions are ruled out for any £ values in the
case of . = 4 for both scenarios which we take into account.
In addition to this, as the £ values increase, observational
parameters are ruled out for any & values in the cases of
w =6, 8, 10 different from smaller ¢ values as well as r
values are highly suppressed and also values of o are very
tiny to be observed in the near future measurements for all
selected v values.

6. Conclusion

In this work, we briefly expressed the Palatini inflation with a
non-minimal coupling in section 2. Considering non-mini-
mally coupled scalar fields, we discussed how these two
formalisms differ from each other in section 2. A very
important feature is the that Palatini approach ensures a nat-
ural inflation since the inflaton in this formalism remains
below the Planckian regime. The other thing is that like strong
suppression of tensor perturbations, form additional dis-
tinctive features of the Palatini approach compared to the
Metric one.

We displayed our results for the inflationary predictions
of non-minimally coupled Palatini quadratic potential in the
large-field limit for high-N scenario in section 3 for
F(¢) = 1 + £¢°. Next, we analyzed the predictions of the
Higgs potential for ¢ > v and ¢ < v in section 4 and hilltop
potentials for ¢ < v in section 5 with non-minimal coupling
in the Palatini formulation by taking F(¢) = 1 + &(¢*—v?)
for both N scenarios. Furthermore, in section 4, we also
investigated the Higgs potential in the induced gravity limit
for the high-N scenario.

We illustrated that for the Palatini quadratic potential
with non-minimal coupling, only small £ values fit the current
measurements given by the Keck Array/BICEP2 and Planck
collaborations [10] for the high-N case. According to our
results, r has very tiny values in the £ > 1 cases where the
inflaton value ¢ > v for the Higgs potential for the high-N
scenario and the low-N scenario. Therefore, we found that the
significant Starobinsky attractor behavior for larger ¢ values
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Figure 16. For hilltop potentials in the Palatini formalism, the figure
shows that o values as functions of £ for 7 = 0.01 and different p
values in the cases of ¢ < v and low-N scenario.

in the Metric formulation disappears in the Palatini formula-
tion for these & cases where the inflaton value ¢ > v for both
two scenarios. In addition to this, for ¢ = 10 ?and £ = 107,
r has very tiny values solely for larger v. However, in the case
of ¢ < v and for also both scenarios, r values are highly
suppressed for £ = —10 and & = —10%

We also analyzed the Palatini Higgs inflation in the
induced gravity limit for the high-N scenario and we found
that for £ > 1 cases, r takes small values. Furthermore, we
calculated the inflationary predictions of hilltop potentials
numerically in the case of the inflaton value ¢ < v and ¢,
v < 1 for the high-N scenario and the low-N scenario. In

12

these types of potentials, inflationary parameters can be
compatible with approximately ¢ < 0.005 values just in the
cases of ¢ < vand v < 1. We also obtained that r values are
highly suppressed in the hilltop potentials for both scenarios.

In general, we conclude that a non-minimally coupled
scalar field in the Palatini approach gives a plausible infla-
tionary evolution for the early universe. Last but not least, we
obtained that the prediction of « is too small to be observed in
future measurements for all our examined potentials but we
consider that more enhanced values of a could be provided
by experiments in the near future, observations of the 21 cm
line in particular [7-9].
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